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INTRODUCTION

The "equioscillation" conditions of Bernstein [11 and Erdos 15] were
originally conjectured to characterize optimal Lagrange interpolation. These
"equioscillation" conjectures have been upheld as theorems in their original
form and in other contexts as may be seen in [2,3,6, 7]. In all of these cases
the proofs have used the same basic components, raising the possibility that
these established cases are indeed particular manifestations of a general
phenomenon. We therefore take the opportunity to formulate a conjecture
about a general problem. The special case solved here will serve to illustrate
some of the difficulties faced in an attempt to solve the more general
problem.

Let Y be an n+ I-dimensional subspace of Cia, b1, which is spanned by a
Tchebycheff system. For given nodes to,"" t n such that

let {Yo ,..., Yn} be the basis for Y such that

(Kronecker delta).

Then an interpolation operator

L: Cia, b] -> Y

is defined by

n

Lj= 2:: j(t;)y;,
;~O
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and we have

Noting that

II
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liLl1 = II <', IJ\III·
I 0 '

and setting

we observe that

i 0

for jE::jO..... l1f.

for j E:: II ..... 11 i.

II L II = max1 A\ ..... i." I.

which depends upon the choice of the nodes I] ..... I" ].
The Bernstein condition previously mentioned is that II L ,I is minimal when

A] = ... = An' The Erdos condition is that the norm of an L which is minimal
always lies between minjA] ..... AIII and maxIA] .... .!.,,?

It seems plausible. based upon several known cases. and upon \41. in
which it is shown that the nodes I] ..... III _ I always exist such that
A] = ... = A". to conjecture that optimal interpolation satisfies the Bernstein
and Erdos conditions whenever the space Y contains the constant function
and 11 >2. Further evidence for this conjecture is that it is always true when
11 = 2.

All methods used so far in the proof of Bernstein and Erdos conjectures
for special Tchebycheff systems Iyo ..... Yn I rely on the fact that the function

n

'" iJ'i(tli
i ()

assumes maximum values A] ..... )'/1 inside the corresponding intervals
[li._.I' t;l.j= 1..... 11.

If one assumes that Y is the span of an extended Tchebycheff system. or
contains the constant function and if n >2. then each ).i must be achieved at
a point in (ti-]' I;). and moreover Ai> I. In this context, the Bernstein and
Erdos conditions, if demonstrated. become a non-trivial and meaningful
characterization of optimality.

If, however, the space Y does not contain the constant functions, it is
possible that an interpolation into Y may exist for which some or all of the



OPTIMAL INTERPOLATION 281

maxima Ai are achieved at nodes. For example, 1 - t2, t3, t4 is a Tchebycheff
system on the interval [-1,1], and on the nodes to = -1, t) = 0, t2 = 1 we
have

()
t3(t - 1)

Yo t = 2 '

y)(t) = 1 - t 2
,

()
t3(t+ 1)

Y2 t = 2 '

and
2

2..: IYi(t)! < 1
i~O

unless t is a node.

Up to now, proofs of the special cases in which the Bernstein and Erdos
conditions have been upheld are dependent upon methods similar to those
used in Theorem 1 of this paper. The heart of this proof is the reduction of
several (n 1) X (n - 1) square matrices of partial derivatives

([}A/otJ7~nl~/~ l'
;",p

pEp,..., n}

to matrices whose entries are point evaluations of functions lying in an
n - I-dimensional space spanned by a Tchebycheff system. Non-singularity
of these matrices thus is equivalent to linear independence of the evaluated
functions. For this procedure to be generalized, even in the case that the
range space Y is the span of an extended Tchebycheff system, some method
of matrix reduction must be developed which will work in more general
cases. Moreover, the resulting matrix of point evaluations must be one with
which positive results can be obtained. In Theorem 2 of this paper, this
second problem arises and is overcome in the immediate context.

In the case of polynomials generated by tk+ 1,..., t k +n, treated in this paper,
which is the first application of the Bernstein and Erdos conjectures to a
space which does not contain constants, there is the third difficulty that
interpolation must be investigated first on the interval [0, b], with an
appropriate redefinition of the quantity AI' before the result can be
generalized to an interval [a, b], with 0 <a < b.

There are, of course, obvious analogues to all of the above if one is
working in the context of periodic functions.

Statement of the Problem

We wish first of all to characterize optimal interpolation from C[O, b] or
from

Co[O,b] {fIfE C[O,b] andf(O)=O},
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choosing the space Y to be
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or

where n is an integer n ~ 2 and k ~ O.
Restricting our attention first to

we choose nodes I I •...• I". with

Then for each i E i I ..... n I. the ith fundamenlal polynomial is given by

One may then construct an inlerpolating projection

L: ClO. b 1---> Y

by

Lf:= \. f(li)Yi
i I

for fEClO.bl.

One then has. setting 10 = 0 for convenience.

I'q = 1'1 \', iYii II', = ,max max, \'. 1.1',(1)1.
i I ./E{I •... ,n) fElt, l.rd i 1

For j E 12,.... n f we denote by Ai the maximum of

"
\' 11'-1'_ .,

i I

on the interval It i _ I. Ii I, and for j E 11 ..... n f we let Xi denote the polynomial
in Y whose restriction to 1t i _ I' ti 1agrees with L:7 I IYi I on that interval. For
jE p ..... ni. we may let T i be the (unique) point in (Ii 1.1) at which Ai is
attained. noting that

and

X;(T) = 0 for j E:' i2 ..... nf·
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We may also let T I be the least positive root of X;, and we define

It is easy to see that T 1 E (0, T2), and we have

283

n

Al = max 2: Iyd
IE[O,I,) ;= I

whenever

On the other hand, if t 1 < T I , this maximum is equal to 1 and is strictly less
than AI' which remains in this case less than A2 •

Interpolation into the same space of polynomials from C[a, b], where a
and b are positive, with nodes t I , ..., tn such that

will be discussed after the treatment of interpolation on the interval [0, b].
The notation used will be that given here.

If one wishes to interpolate with the space

on the nodes to,'''' tn' with

o to<tl<·,·<tn=b,

one has the same construction as before for the fundamental polynomials
y I'"'' Yn' It is then possible to set

n

Yo= 1- '\' Y;,
;=1

and to define Xl""'Xn, A1"'" An' and T 2 , ... , Tn in the same manner as
before. Then T I also may be defined in a more standard manner as the
unique point in [to, t1] which satisfies

Optimization of Interpolation on [0, b]

We summarize our results as

THEOREM 1. Let L be an interpolating projection into the space

Y <k+l tk + n )== t ,..., ,

where t is restricted to the closed interval [0, b], and where n is an integer,
n ~ 2, and k > O. Then:
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(i) For L to be of minimal norm, it is necessary that AI = ... = An'

(ii) Equality of AI"'" An occurs at a unique set of nodes.

(iii) If one of )'1"'" An is greater than the norm of the minimal
projection, then another is less.

(iv) Results (i), (ii), and (iii) also hold if the space Y is taken to be

Remarks. (a) Clearly, (ii) implies the converse of (i), namely, that for
L to be of minimal norm, it is sufficient that Al = ... = ). n •

(b) Norm of the optimal interpolating projection L does not depend
upon the length of the interval 10, b I. This follows because of the fact that
the natural isometry from CI 0, II (respectively ColO, I J) to CI 0, b I (respec
tively ColO, b J) carries the space <t k + I, ... , t k + n

) into itself.

(c) More generally than in (b), one may state the following:
Let F(X) be any normed linear space of functions defined on an

underlying set X. Let X' be any set homeomorphic to X and h: X ---> X' any
homeomorphism between the two sets. Then h induces an isometric
isomorphism between F(X) and F(X' ), where g E F(X ') if g 0 h = f for some
f E F(X). In particular, the natural homeomorphism t ---> lit between the
intervals 10, 1 1 and [I, 00 1 induces a natural isometry between Co [0, 1 I and
Coil, 00 I, the space of all functions continuous on 11,00] whose value at 00

is zero. Thus, results (i), (ii), and (iii) also hold for interpolation into the
space

restricted to II, 00 I,

which is itself isomorphic to the space

restricted to [0, I I.

(d) The proof of Theorem 1(iv) mimics that of parts (i), (ii), and (iii)
and will therefore not be given in separate form.

Proof of Theorem 1. Establishment of (i), (ii), and (iii) depends upon
consideration of the function

(1 1 ,···,ln 1)---> (AI,···,A n),

which is defined whenever °< I I < ... < In = b, and its derivative
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which exists and is continuous on the same domain. The fundamentals of the
proof of Theorem 1 are thus the same as those of previous, similar results on
optimization of interpolation, including in particular those of [6] and [7].
Therefore, the proof is given here in outline, with appropriate care shown for
the differences which our particular cases present.

We let D p denote the determinant of the square matrix obtained by
deletion of the ith column of D, for i E p,..., n}, after which one may
establish conditions

(1) Dp "* 0, globally and for pEp,..., n}, and

(2) (_1); DiD I <° for p E {2,... , n}, which also holds globally.
Conditions (1) and (2) will be discussed in more detail after the main body
of the proof, which we now continue to present.

From (1), assertion (i) follows directly. For, if for some p E {I,... , n}, Ap <
II L II, non-singularity of D p implies that we may perturb ll"'" l n _ 1 to decrease
simultaneously each of A!'... , An except Ap •

From (2), we may deduce the remaining assertions. We conclude
immediately that

(3 )
n

'\' (-ly+ID p "*O
p=1

holds globally, from which it follows that the map

(tl ,... , In_I)-+ (..1. 2 - A!, ..1. 3- ..1. 2 "", An - An_I)

is a local homeomorphism. Following the arguments of [3], which apply
here without essential change, we establish that (2) holds, and furthermore
that our local homeomorphism is in fact global, from which (ii) follows as
an immediate consequence.

Assertion (iii) is implied by Theorem 2 of [3]. That theorem, whose proof
remains valid in the new context, states the slightly stronger assertion that, if
ll' ... ,ln_1 and sl' ... ,sn_1 are such that

for i E p,..., n},

then

for j E p,...,n - l}.

This concludes the proof of Theorem 1.

A discussion of conditions (1) and (2). The matrix D may be reduced to
an equivalent matrix by the following steps:

(a) oA;/iJtj = -Yj(TJ X; (lj) for i E p,..., n} and j E p,..., n - l}.
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(b) For j E {1 ,..., n If, the jth row of D is multiplied by the non
zero expression

n

t j II (tj-t l ),

I I
l-j

cancelling simultaneously the multiple root at 0 of Xi (t j) and the
denominator of .vi'

(c) For i E 11,... , n f, the ith column is divided by the non-zero
expression

n

T7 t I I ! (T; ~ td.
I I

The matrix which results from these operations on D is an '"evaluation
matrix," each entry oJ..PJlj being replaced by

where. for i E 11,... ,11 f, qi is a polynomial of degree n ~ 2 or less. The proof
of (I) and (2) thus depends upon a proof that the set 1q I ..... q" f of
polynomials thus defined becomes a basis for the space of polynomials of
degree n - 2 or less whenever anyone of ql ....' qll is deleted from the set. The
reader is referred to 13\ or 171 for this proof, which depends upon a globally
invariant interlacing of the roots of q I.···' q".

Generalization of Theorem I to the Interval Ia. b I
We now consider interpolation into the same space

on the interval Ia, b I, where 0 <a < b. By Remark (a) following Theorem L
it is possible to assume that

0< a = t 1 < ... < t ff = 1 = b.

We will show, using the notation already established, the following:

THEOREM 2. Let a and nodes t 1 , ••• , t
ff

be given as above. Then:

(i) In order that the norm of interpolation into (t k
+ I ••.• , tkl ff) on

Ia, b 1 be minimized, it is necessary that ,1.2 = ... = All'

(ii) Given that t l a and tn b = 1, the condition that A2 = ." = J' ff

determines t l , ... , tn - 1 uniquely.
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(iii) If, for some i E p,...,n}, AI exceeds C(n, k, a), by which we denote
the norm of the minimal projection based on the interval [a, 1), there is j E
p,...,n} such that Aj is less than C(n,k,a).

(iv) For 0 <a < 1, the quantity C(n, k, a) is a strictly decreasing
function of a, and moreover

lim C(n,k,a)=Cn_ll
a~1

where Cn_ 1 denotes the norm of optimal interpolation with polynomials of
degree n - 1 or less, which is independent of one's choice of an interval.

Remark. The minimization of max{A2 , ••• , An} with the nodes t l and tn
fixed is not an analogue of the problem dealt with in Theorem 1, and the
original proof does not directly apply. The difficulty is as follows.

Assume that one wishes to vary t2 , ... , tn _ 1 in order to effect a decrease in
all but one of A2 , ...,An • As before, this is possible if a certain matrix whose
entries are partial derivatives is globally non-singular. As before, this matrix
(of dimension (n - 2) X (n - 2) this time) is equivalent to an "evaluation
matrix" involving n - 2 polynomials evaluated at n 2 points. Unfor
tunately, the polynomials are the same as those involved in the proof of
Theorem 1, and their degree is n - 2 or less, not n - 3 or less. It does not
usually follow that a linear combination of polynomials of degree n - 2 or
less which is zero at n - 2 points is identically zero. However, it does follow
in certain special cases, on one of which the following proof is based.
Specifically, Lemma 9 of [7) states that no non-trivial linear combination of
the polynomials q3 ,..., qn can have roots at the nodes t2 , ... , tn_I' inasmuch as

Proof of Theorem 2. From the preceding remark, it follows that the
matrix

is non-singular for 0 < t 1 < t2 < ... < tn' From this fact it follows by the
Implicit Function Theorem that, beginning at any initial position of the
nodes t l , ,tn_1' it is possible to vary t 1 within some neighborhood and to
move t2 , , tn_ 1 in such a way that A3 ... An retain their initial values.
Moreover, as discussed in [7), the neighborhood upon which the implicit
function

640/41/3~7
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is defined IS III fact the whole interval (0, 1). As t I approaches tn = L the
basis functions YI ,..., Yn uniformly and smoothly approach polynomials of
degree n - 1 on the interval It I' tn)' It is also clear that, as t I increases, and
t2 , ••• , tn_ I move subject to the condition that A3 , ••• , An remain constant, it is
necessary that Al --+ 00. By conditions (1) and (2) laid down in the proof of
Theorem 1, AI must in fact strictly increase, and moreover A2 must strictly
decrease.

We are now in a position to demonstrate (i) of Theorem 2. Assume first of
all that it is desired to decrease simultaneously), 3 , ••• , ). n' This can be done
easily, because the non-singularity conditions given in the Remark above are
precisely what is needed. On the other hand, it may be desired to decrease
simultaneously all of A2 , ••• , An except for some Ap , p E 13,... , n f. We may
move t I"'" t n _ I' as described above, until they are in as small a
neighborhood of 1 as desired, at which point the nodes t2"'" tn- I may be
perturbed in such a way as to effect a decrease in A2 , and an increase in Ap •

while the others do not change. We may now return the nodes to the original
interval, moving t 2 , ••• , tn_ I as functions of t I' defined by the condition that
A3 , ••• , An retain their new values. If A2 is now less than its original value, we
have succeeded in reducing the problem to that of reducing simultaneously
A3 , ••• ,A n . If on the other hand the new value of A2 is exactly the same as or
exceeds the old, we have a situation in which, for the same interval of inter
polation, we have two different sets of nodes, say, T = 1t 1 , ••• , t n f and S =
151"'" 5ni, such that t 1 = 51 and tn= 5n = I, and we also have

for i E i2.... , n f.

As will be shown in the course of proving (iii), this cannot be the case.
Parts (ii) and (iv) of Theorem 2 may be handled together. Assuming first

of all that, for some t l , •••• tn-I' we have A3 = ... = An = e. for some e, we
note that, moving t 1"'" t n I as before subject to the condition that A3 = ... =
An = e, there is a unique position of t 1 , ••• , tn-I such that A2 = e also. This fact
defines t I as a function of e which is continuous, differentiable, and
dt Iide < 0. Thus, e is also a function of t I' and lim ll ~I e = Cn_ l , the norm of
optimal interpolation with polynomials of degree n - 1 or less.

We move to the proof of (iii). Theorem 2 of 121 was used in proving the
corresponding hypothesis of Theorem 1. That theorem of 121 stated that, if

and
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were systems of nodes with 0 = So = to and b = Sn = tn such that

289

for all i E {I•...• n}.

then

T=S.

from which (iii) of Theorem 1 follows immediately. A strengthened version
of this theorem is needed here. which states that. if t I = S I = a. and if

for iE{2..... n}.

then

T=S.

Obviously. this strengthened version is true locally. that is. if the interval
[a, 1] is sufficiently short. because of the previously noted uniform
convergence of the whole system of interpolation to a system of interpolation
with ordinary polynomials of degree n - 1 as a --+ 1.

First of all, we note that. if in fact

for i E {3..... n}.

while

equality of Sand T follows by the arguments used in the proof of (ii) and
(iv). For the conditions

for iE{3 ..... n}.

where ci are several constants. determine the nodes t2 ,.... tn - 1 as implicit
functions of t I •

Finally. if T and S were such that

and

forall iE{3..... n}.

except for one index. P. where

it would then be possible to obtain a set of nodes T' for which
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while
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for i E p,... , nf.

But, as seen above, this is not possible.
This completes the proof of Theorem 2.
We remark in conclusion that the methods of proof employed in

Theorem 2 could be used to prove similar results for interpolation carried out
with trigonometric polynomials on an interval 10, b I.
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